Part Number Hot Search : 
F1040 LTC226 RL203G SR303 HD14071 BR1006S C876764 AD1674AD
Product Description
Full Text Search
 

To Download HYB25D128323C Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 Data Sheet, V1.7, July 2003
HYB25D128323C[-3/-3.3] HYB25D128323C[-3.6/L3.6] HYB25D128323C[-4.5/L4.5] HYB25D128323C-5
128 Mbit DDR SGRAM
Memory Products
Never
stop
thinking.
Edition 2003-07 Published by Infineon Technologies AG, St.-Martin-Strasse 53, 81669 Munchen, Germany (c) Infineon Technologies AG 2003. All Rights Reserved. Attention please! The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics. Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.
Data Sheet, V1.7, July 2003
HYB25D128323C[-3/-3.3] HYB25D128323C[-3.6/L3.6] HYB25D128323C[-4.5/L4.5] HYB25D128323C-5
128 Mbit DDR SGRAM
Memory Products
Never
stop
thinking.
HYB25D128323C[-3/-3.3], HYB25D128323C[-3.6/L3.6], HYB25D128323C[-4.5/L4.5], HYB25D128323C-5 Revision History: Previous Version: Page all 43 46 48 9, 13, 42, 46, 48 V1.7 V1.51 2003-07 2002-07
Subjects (major changes since last revision) new data sheet template AC Operation Conditions: Input Slew Rate added Timing Parameters for speed sorts -3, -3.3, -3.6, -4.5, and -5: Write DQS High/Low added Timing Parameters for speed sorts L3.6 and L4.5: Write DQS High/Low added V1.51 2002-07 extended VDD range for -3.6 and L3.6
Previous Version:
We Listen to Your Comments Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: techdoc.mp@infineon.com
Template: mp_a4_v2.0_2003-06-06.fm
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5] 128 Mbit DDR SGRAM [4M x 32]
Table of Contents 1 1.1 1.2 2 3 3.1 3.2 3.3 3.3.1 3.4 3.4.1 3.4.2 3.4.3 3.4.3.1 3.4.3.2 3.5 3.5.1 3.5.2 3.5.3 3.5.4 3.5.5 3.5.6 3.5.7 3.5.8 3.5.9 3.5.10 3.5.11 3.5.12 3.5.13 3.5.14 3.5.15 3.5.16 3.6 3.6.1 3.6.2 3.6.3 3.6.4 3.6.5 3.6.6 3.7 3.8 3.9 4 5 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Register Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mode Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Extended Mode Register Setup (EMRS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Signal and Timing Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Special Signal Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Clock Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Command Inputs and Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Data Strobe and Data Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operation at Burst Reads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operation at Burst Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Description of Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power-Up Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mode Register Set Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Extended Mode Register Set Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bank Activation Command (ACT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Precharge Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Self Refresh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Auto Refresh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power Down Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Burst Mode Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Burst Read Operation: (READ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Burst Write Operation (WRITE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Burst Stop Command (BST) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Data Mask (DMx) Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Autoprecharge Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Read with Autoprecharge (READA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Write with Autoprecharge (WRITEA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Burst Interruption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Read Interrupted by a Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Read Interrupted by a Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Read Interrupted by a Precharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Write Interrupted by a Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Write Interrupted by a Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Write Interrupted by a Precharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operations and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Function Truth Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DDR SGRAM Simplified State Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 15 16 16 16 17 17 17 17 17 18 20 20 20 20 21 21 22 23 23 24 24 25 26 27 28 28 30 31 31 32 33 33 34 34 35 36 41
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Data Sheet
5
V1.7, 2003-07
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5] 128 Mbit DDR SGRAM [4M x 32]
List of Figures Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 Figure 15 Figure 16 Figure 17 Figure 18 Figure 19 Figure 20 Figure 21 Figure 22 Figure 23 Figure 24 Figure 25 Figure 26 Figure 27 Figure 28 Figure 29 Figure 30 Figure 31 Figure 32 Ball Out 128Mbit DDR SGRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mode Register Bitmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Extended Mode Register Bitmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Command and Address Signal Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DQS Timing for Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DQS and DM Timing at Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DQS Pre/Postamble at Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power-Up Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mode Register Set Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Activate to Read or Write Command Timing (one bank) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Activate Bank A to Activate Bank B Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Precharge Command Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Self Refresh timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Autorefresh timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power Down Mode timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Burst Read Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Burst Write Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Burst Stop for Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Data Mask Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Read Burst with Autoprecharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Read Concurrent Auto Precharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Write Burst with Auto Precharge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Read interrupted by Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Read interrupted by Write. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Read interrupted by Precharge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Write interrupted by Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Write interrupted by Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Write interrupted by Precharge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DDR SGRAM Simplified State Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output Test Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 14 15 16 17 18 19 19 20 20 21 21 22 23 23 24 25 26 27 28 29 30 31 32 32 33 33 34 35 41 43 52
Data Sheet
6
V1.7, 2003-07
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5] 128 Mbit DDR SGRAM [4M x 32]
Data Sheet
7
V1.7, 2003-07
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5] 128 Mbit DDR SGRAM [4M x 32]
List of Tables Table 1 Table 2 Table 3 Table 4 Table 5 Table 6 Table 7 Table 8 Table 9 Table 10 Table 11 Table 12 Table 13 Table 14 Table 15 Table 16 Table 17 Table 18 Table 19 Table 20 Table 21 Table 22 Table 23 Table 24 Table 25 Table 26 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Signal and Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 IO Driver Strength and Interface Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Mapping of DQSx and DMx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Precharge Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Burst Mode and Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Concurrent Read Auto Precharge Support. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Concurrent Write Auto Precharge Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Command Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Function Truth Table I. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Function Truth Table for CKE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Power & DC Operation Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 AC Operation Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Pin Capacitances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Timing Parameters for speed sorts -3, -3.3, -3.6, -4.5, and -5 . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Timing Parameters for speed sorts L3.6 and L4.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 HYB25D128323C-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 HYB25D128323C-3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 HYB25D128323C-3.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 HYB25D128323C-4.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 HYB25D128323C-5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 HYB25D128323CL3.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 HYB25D128323CL4.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Operating Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Data Sheet
8
V1.7, 2003-07
128 Mbit DDR SGRAM
HYB25D128323C[-3/-3.3] HYB25D128323C[-3.6/L3.6] HYB25D128323C[-4.5/L4.5] HYB25D128323C-5
1
1.1
* * * * * * * * * * * * * * * * * * * * * *
Overview
Features
Maximum clock frequency up to 333 MHz Maximum data rate up to 666 Mbps/pin Data transfer on both edges of clock Programmable CAS latency of 2, 3 and 4 clocks Programmable burst length of 2, 4 and 8 Integrated DLL to align DQS and DQ transitions with CLK Data transfer signals are synchronized with byte wise bidirectional Data Strobe Data Strobe signal edge-aligned with data for Read operations Data Strobe signal center aligned with data for Write operations Differential clock inputs (CLK and CLK) Data mask for masking write data, one DM per byte Organization 1024K x 32 x 4 banks 4096 rows and 256 columns per bank 4K Refresh (32ms) Refresh Interval 7.8 sec Autorefresh and Self Refresh available Standard JEDEC TF-XBGA 128 package Self-mirrored, symmetrical ball out Matched Impedance Mode interface (Z0=60) SSTL-2 JEDEC Weak Mode interface (Z0=34) IO voltage VDDQ = 2.5 V VDD power supply memory core: - Speed sorts -3 and -3.3: 2.5 V < VDD < 2.9 V - Speed sorts L4.5, -4.5, and -5: VDD = 2.5 V - Speed sorts L3.6 and -3.6 support both VDD modes Performance -3 -3.3 3.3 300 4.0 250 1.15 0.30 -3.6 3.6 278 4.2 238 1.26 0.33 -4.5 4.5 222 4.5 222 1.58 0.45 -5.0 5.0 200 5.0 200 1.75 0.5 L3.6 3.6 278 4.2 238 1.26 0.33 L4.5 4.5 222 4.5 222 1.58 0.45 Unit ns MHz ns MHz ns ns
Table 1
Part Number Speed Code CAS Latency 4 CAS Latency 3 Data Out Window DQS-DQ Skew
tCK4min. fCK4max. tCK3min. fCK3max. tQH tDQSQ
3 333 4.0 250 1.05 0.30
1.2
Description
The Infineon 128Mbit DDR SGRAM is a ultra high performance graphics memory device, designed to meet all requirements for high bandwidth intensive applications like PC graphics systems. The 128Mbit DDR SGRAM uses a double-data-rate DRAM architecture organized as 4 banks x 4096 rows x 256 columns x 32 bits. The double-data-rate architecture is essentially a 2n prefetch architecture, with an interface designed to transfer two data words per clock cycle at the I/O pins. A single Read or Write access to the DDR Data Sheet 9 V1.7, 2003-07
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5] 128 Mbit DDR SGRAM [4M x 32]
Overview SGRAM consists of a single 64-bit wide, one clock cycle data transfer at the internal DRAM core and two corresponding 32-bit wide, one-half clock cycle data transfers at the I/O pins. The result is a data rate of 666 Mbits / sec per pin. The external data interface is 32 bit wide and achieves at 333 MHz system clock a peak bandwidth of 2.66 Gigabytes/sec. The device is supplied with 2.5 V resp. within the range of 2.5 V - 2.9 V for the memory core and 2.5 V for the output drivers. Two drivers strengths are available: 2.5 V Matched Impedance Mode and SSTL2 Weak Mode. The "Matched Impedance Mode" interface is optimized for high frequency digital data transfers and matches the impedance of graphics board systems (60Ohm). Auto Refresh and Self Refresh operations are both supported. A standard JEDEC TF-XBGA 128 package is used which enables ultra high speed clock and data transfer rates. The signals are mapped symmetrically to the balls in order to enable mirrored mounting in application. The chip is fabricated in Infineon technologies advanced 256M process technology.
Data Sheet
10
V1.7, 2003-07
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5] 128 Mbit DDR SGRAM [4M x 32]
Pin Configuration
2
Pin Configuration
1 A B C D E F G H J K L M
DQS0 DQ4 DQ6 DQ7 DQ17 DQ19 DQS2 DQ21 DQ22
2
DM0 VDDQ DQ5 VDDQ DQ16 DQ18 DM2 DQ20 DQ23
3
VSSQ NC VSSQ VDD VDDQ VDDQ NC VDDQ VDDQ VDD NC BA0
4
DQ3 VDDQ VSSQ VSS VSSQ VSSQ VSSQ VSSQ VSSQ VSS BA1 A0
5
DQ2 DQ1 VSSQ VSSQ
6
DQ0 VDDQ VDD VSS
7
DQ31 VDDQ VDD VSS
8
DQ29 DQ30 VSSQ VSSQ
9
DQ28 VDDQ VSSQ VSS VSSQ VSSQ VSSQ VSSQ
10
VSSQ NC VSSQ VDD VDDQ VDDQ NC VDDQ VDDQ VDD CLK
A8/AP
11
DM3 VDDQ DQ26 VDDQ DQ15 DQ13 DM1 DQ11 DQ9 NC CLK# CKE
12
DQS3 DQ27 DQ25 DQ24 DQ14 DQ12 DQS1 DQ10 DQ8 NC MCL VREF
TOP VIEW 128 BALL XBGA 4 Banks x 4096 Rows x 256 Columns x 32 Bits
VSS A10 A2 A1 VSS VDD A11 A3 VSS VDD A9 A4 VSS RFU A5 A6
VSSQ VSS RFU A7
CAS# WE# RAS# CS# NC NC
Figure 1
Ball Out 128Mbit DDR SGRAM
Note: The inner matrix of 4 x 4 balls will be used as thermal VSS contacts ncluding the thermal VSS contacts, the total amount of balls is 144
Data Sheet
11
V1.7, 2003-07
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5] 128 Mbit DDR SGRAM [4M x 32]
Pin Configuration Table 2 Pin CLK, CLK Signal and Pin Description IO Type Detailed Function Input Clock: CLK and CLK# are differential clock inputs. All address and command inputs are latched on the crossing of the positive edge of CLK and the negative edge of CLK. Output data (DQ's and DQS) is referenced to the crossing of CLK and CLK. Clock Enable: CKE HIGH activates and CKE LOW deactivates the internal clock, input buffers and output drivers. Taking CKE LOW provides PRECHARGE POWERDOWN and SELF REFRESH operations (all banks idle), or ACTIVE POWER-DOWN (row active in any bank). CKE is synchronous for POWER-DOWN entry and exit, and for SELF REFRESH entry. CKE is asynchronous for SELF-REFRESH exit. CKE must be maintained HIGH trough out READ and WRITE accesses. Input buffers (excluding CLK, CLK) are disabled during POWER-DOWN. Input buffers (excluding CKE) are disabled during SELF REFRESH. CKE is an SSTL2 input but will detect an LVCMOS LOW level after VDD is applied. Chip Select: CS# enables the command decoder when low and disables it when high. When the command decoder is disabled, new commands are ignored, but internal operations continue. CS# is considered part of the command code. Command Inputs: CAS, RAS, and WE (along with CS) define the command to be executed. Bank Address Inputs: BA0 and BA1 select to which internal bank an ACTIVE, READ, WRITE, or PRECHARGE command is being applied. They also define which mode register (mode register or extended mode register) is loaded during a MODE REGISTER SET command. Address Inputs: During a Bank Activate command cycle, A0-A11 defines the row address (RA0-RA11). During a Read or Write command cycle, A0-A7 defines the column address (CA0-CA7). In addition to the column address, A8/AP is used to invoke autoprecharge operation at the end of the burst read or write cycle. If A8 is high, the active bank is precharged. If A8 is low, the Autoprecharge function is disabled. During a Precharge command cycle, A8/AP is used to determine, which bank(s) will be precharged. If A8/AP is high, all four banks will be precharged regardless of the state of BA0 and BA1. If A8/AP is low, BA0 and BA1 define the bank to be precharged. The address inputs also provide the op-code during a MODE REGISTER SET command. Data Strobes: The DQSx are the bidirectional strobe signals. At read cycles, the DQSx signals are generated by the SGRAM and are edge-aligned to the data. At write cycles, the DQS signals are generated by the controller. The rising or falling edge indicates the center of the data valid window. Before and after a transfer cycle, DQSx enters a preamble and a postamble state. The DQSx signals are mapped to the following data bytes: DQS0 to DQ0.. DQ7, DQS1 to DQ8.. DQ15, DQS2 to DQ16..DQ23, DQS3 to DQ24.. DQ31. Data Input/Output: The DQx signals form the 32 bit wide data bus. At READ cycles the pins are outputs and during WRITE cycles inputs. The data is transferred at both edges of the DQSx signals.
CKE
Input
CS
Input
RAS, CAS, WE Input BA1, BA0 Input
A11.. A0
Input
DQS3.. DQS0
I/O
DQ31.. DQ0
I/O
Data Sheet
12
V1.7, 2003-07
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5] 128 Mbit DDR SGRAM [4M x 32]
Pin Configuration Table 2 Pin DM3.. DM0 Signal and Pin Description (cont'd) IO Type Detailed Function Input Input Data Mask: The DM signals are input mask signal for WRITE data. They mask off a complete byte on the data bus. DMx = 1 prevents the corresponding byte from being written. DM3 corresponds to DQ31..DQ24, DM2 to DQ23..DQ16, DM1 to DQ15..DQ8, DM0 to DQ7..DQ0. DM signals are sampled on both edges of DQS. Although DM pins are input-only, the DM loading is designed to match that of DQ and DQS pins. Voltage Reference: VREF is the reference voltage input signal. Power Supply: Power and Ground for the internal logic. VDD = 2.5 V 5% for L4.5, -4.5, and -5 2.5 V - 5% < VDD < 2.9 V for -3.6 and L3.6 2.5 V < VDD < 2.9 V for -3 and -3.3 IO Power Supply: Isolated Power and Ground for the output buffers to provide improved noise immunity. VDDQ = 2.5V 5% Please do not connect No Connect, Reserved for Future Use pins. Must be connected to low
VREF VDD, VSS
Input Supply
VDDQ, VSSQ
NC, RFU MCL
Supply - -
Data Sheet
13
V1.7, 2003-07
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5] 128 Mbit DDR SGRAM [4M x 32]
Pin Configuration
Column Addresses A7-A0, AP Column Address Buffer Column Address Counter
Row Addresses A11-A0, BA1-BA0 Row Address Buffer Refresh Counter Sense Amplifiers and Data Bus Buffer Row Decoder Column Decoder Memory Array Bank 3 4096 x 256 x 32 bit Control Logic & Timing Generator CLK CLK# CKE CS# RAS# CAS# WE# Vref
Sense Amplifiers and Data Bus Buffer
Sense Amplifiers and Data Bus Buffer
Column Decoder
Column Decoder
Bank 0
Bank 1
Column Decoder
Memory Array
Memory Array
Sense Amplifiers and Data Bus Buffer
Row Decoder
Row Decoder
Row Decoder
Memory Array Bank 2
4096 x 256 x 32 bit
4096 x 256 x 32 bit
4096 x 256 x 32 bit
Input Buffers
Output Buffers
DQ31-DQ24
DQ23-DQ16
DQ15-DQ8
DQ7-DQ0
DQS3
DQS2
DQS1
Data
Data
Data
Data
DM3
DM2
DM1
DQS0
Figure 2
Functional blocks
Data Sheet
14
DM0
V1.7, 2003-07
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5] 128 Mbit DDR SGRAM [4M x 32]
Register Set
3
3.1
Register Set
Mode Register
The mode register stores the data for controlling the various operating modes of the DDR SGRAM. It programs CAS latency, addressing mode, burst length, test mode, DLL ON and various vendor specific options. The default value of the mode register is not defined. Therefore the mode register must be written after power up to operate the DDR SGRAM. The DDR SGRAM should be activated with CKE already high prior to writing into the Mode Register. The Mode Register is written by using the MRS command. The state of the address signals registered in the same cycle as MRS command is written in the mode register. The value can be changed as long as all banks are in the idle state. The mode register is divided into various fields depending on functionality. The burst length uses A2.. A0, CAS latency (read latency from column address) uses A6.. A4. A7 is used for test mode, A8 is used for DLL Reset. A7, A8 and BA1 must be set to low for normal DDR SGRAM operation. A9.. A11 is reserved for future use. BA0 selects Extended Mode Register Setup operation when set to 1. Refer to the table for specific codes for various burst length, addressing modes and CAS latencies.
BA1
BA0
A11
A10
A9
A8
A7
A6
A5
A4
A3
A2
A1
A0
Address Bus
0
0
RFU
RFU
RFU
DLL
TM
CAS Latency
BT
Burst Length
Mode Register
Extended Mode Register Access
BA0 0 1 Accessed Register Mode Register Extend. Mode Reg.
Testmode
A7 0 1 mode Normal Testmode
Burst Type
A3 0 1 Type Sequential Reserved
DLL Reset
A8 0 1 DLL Reset No Yes
CAS Latency
A6 0 0 1 A5 1 1 0 A4 0 1 0 Latency 2 3 4
All other Reserved
Burst Length
A2 A1 A0 Length Sequential 2 4 8 Interleave 2 4 8
0 0 0
0 1 1
1 0 1
All other Reserved
Figure 3
Mode Register Bitmap
Data Sheet
15
V1.7, 2003-07
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5] 128 Mbit DDR SGRAM [4M x 32]
Register Set
3.2
Extended Mode Register Setup (EMRS)
The Extended Mode Register is responsible for enabling / disabling the DLL in the HYB25D128323C and for selecting the interface type for the IOs and input pins. The Extended Mode Register can be programmed by performing a normal Mode Register Setup operation and setting the BA0 bit to high. All other bits of the EMRS register are reserved and should be set to low. The Bit A0 enables / disables the DLL. The Bits A1 and A6 set the driver strength of the IOs. For detailed explanation, refer to the following table. Table 3 A6 0 0 1 1 IO Driver Strength and Interface Settings A1 0 1 0 1 Drive Strength SSTL-2 weak SSTL-2 weak RFU matched impedance mode Strength/ Impedance 60% / 34Ohm 60% / 34Ohm RFU 30% / 60Ohm IO Power Supply VDDQ 2.5V 2.5V RFU 2.5V Comment replacement for strong mode - Do not use output driver matches line impedance
Note: The combination A6=0 and A1=0 defines SSTL-2 strong mode in 32M DDR SGRAM which is not supported in this device.
BA1
BA0
A11
A10
A9
A8
A7
A6
A5
A4
A3
A2
A1
A0
Address Bus
0
1
RFU must be set to "0"
DS1
RFU must be set to "0"
DS0
DLL
Extended Mode Register
Extended Mode Register Access
BA0 0 1 Accessed Register Mode Register Extend. Mode Reg. A6 0 0 1 1 A1 0 1 0 1 Drive Strength SSTL II-Weak Mode SSTL II-Weak Mode RFU Matched Impedance 2.5V A0 0 1 DLL Enable Enable Disable
Figure 4
Extended Mode Register Bitmap
3.3 3.3.1
Signal and Timing Description General Description
The 128Mbit DDR SGRAM is a 16MByte Synchronous Graphics DRAM. It consists of four banks. Each bank is organized as 4096 rows x 256 columns x 32 bits. Read and Write accesses are burst oriented. Accesses begin with the registration of an Activate command, which is then followed by a Read or Write command. The address bits registered coincident with the Activate command are used to select the bank and the row to be accessed. BA1 and BA0 select the bank, address bits A11.. A0 select the row. Address bits A7.. A0 registered coincident with the Read or Write command are used to select the starting column location for the burst access. The regular Single Data Rate SGRAM read and write cycles only use the rising edge of the external clock input. For the DDR SGRAM, the special signals DQSx (Data Strobe) are used to mark the data valid window. During Data Sheet 16 V1.7, 2003-07
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5] 128 Mbit DDR SGRAM [4M x 32]
Register Set read bursts, the data valid window coincides with the high or low level of the DQSx signals. During write bursts, the DQSx signal marks the center of the valid data window. Data is available at every rising and falling edge of DQSx, therefore the data transfer rate is doubled. For Read accesses, the DQSx signals are aligned to the clock signal CLK.
3.4 3.4.1
Special Signal Description Clock Signal
The DDR SGRAM operates with a differential clock (CLK and CLK#) input. CLK is used to latch the address and command signals. Data input and DMx signals are latched with DQSx. The DDR SGRAM implements a Delay Locked Loop circuit (DLL) which tracks both edges of the CLK input signal and aligns the DQS output edges with the CLK input edges. The minimum and maximum clock cycle time is defined by tCK. The maximum value for tCK is defined to provide a lower bound for the operation frequency of the internal DLL circuit. The minimum and maximum clock duty cycle are specified using the minimum clock high time tCH and the minimum clock low time tCL respectively. The internal DLL circuit requires additional 200 clock cycles after DLL reset for internal clock stabilization.
3.4.2
Command Inputs and Addresses
Like single data rate SGRAMs, each combination of RAS#, CAS# and WE# input in conjunction with CS# input at a rising edge of the clock determines a DDR SGRAM command.
VIH CLK, CLK# VIL tIS Address, CS#, RAS#, CAS#, WE#, CKE Valid tIH Valid VIH VTT VIL
Figure 5
Command and Address Signal Timing
3.4.3 3.4.3.1
Data Strobe and Data Mask Operation at Burst Reads
The Data Strobes provide a 3-state output signal to the receiver circuits of the controller during a read burst. The data strobe signal goes tRPRE clock cycle low before data is driven by the DDR SGRAM and then toggles low to high and high to low till the end of the burst. The CAS latency is specified to the first low to high transition. The edges of the Output Data signals and the edges of the data strobe signals during a read are nominally coincident with edges of the input clock. The tolerance of these edges is specified by the parameters tAC and tDQSCK and is referenced to the crossing point of the CLK and CLK# signal. The tDQSQ timing parameter describes the skew between the data strobe edge and the output data edge. The following table summarizes the mapping of DQSx and DMx signals to the data bus.
Data Sheet
17
V1.7, 2003-07
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5] 128 Mbit DDR SGRAM [4M x 32]
Register Set
Table 4
Mapping of DQSx and DMx data mask signal DM0 DM1 DM2 DM3 Controlled data bus DQ7 .. DQ0 DQ8 .. DQ15 DQ16 .. DQ23 DQ24 .. DQ31
data strobe signal DQS0 DQS1 DQS2 DQS3
The minimum time during which the output data is valid is critical for the receiving device. This also applies to the Data Strobe DQS during a read since it is tightly coupled to the output data. The parameters tQH and tDQSQ define the minimum output data valid window. Prior to a burst of read data, given that the device is not currently in burst read mode, the data strobe signals transit from Hi-Z to a valid logic low. This is referred to as the data strobe "read preamble" tRPRE. Once the burst of read data is concluded, given that no subsequent burst read operation is initiated, the data strobe signals transit from a valid logic low to Hi-Z. This is referred to as the data strobe "read postamble" tRPST.
T0 CLK, CLK#
tCH tCL
T1
tCK
T2
tHP
T3
T4
VIH VIL
tDQSCK "Preamble" tRPRE "Postamble" tRPST
DQS
VIH VTT VIL
tAC
DQx
tDQSQ
D tQH
D+1
D+2
D+3
VIH VTT VIL
tQHS
Figure 6
DQS Timing for Read
3.4.3.2
Operation at Burst Write
During a write burst, control of the data strobe is driven by the memory controller. The DQSx signals are nominally centered with respect to data and data mask. The tolerance of the data and data mask edges versus the data strobe edges during writes are specified by the setup and hold time parameters of data (tQDQSS & tQDQSH) and data mask (tDMDQSS & tDMDQSH). The input data is masked in the same cycle when the corresponding DMx signal is high (i.e. the DMx mask to write latency is zero.)
Data Sheet
18
V1.7, 2003-07
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5] 128 Mbit DDR SGRAM [4M x 32]
Register Set
DQSx
VIH VTT VIL tDMDQSS
tDMDQSS VIH VTT VIL
DMx
tDMDQSH tQDQSH tQDQSH Q+1 Q+2 tQDQSS Input Data masked Q+3
tDMDQSH
DQx
Q tQDQSS
Q+4
VIH VTT VIL
Figure 7
DQS and DM Timing at Write
Prior to a burst of write data, given that the controller is not currently in burst write mode, the data strobe signal (DQSx) transits from Hi-Z to a valid logic low. This is referred to as the data strobe "Write Preamble". Once the burst of write data is concluded, given that no subsequent burst write operation is initiated, the data strobe signal (DQSx) transits from a valid logic low to Hi-Z. This is referred to as the data strobe "Write Postamble", tWPST. For DDR SGRAM, data is written with a delay which is defined by the parameter tDQSS (DDR write latency). This is different than the single data rate SGRAM where data is written in the same cycle as the Write command is issued.
CLK, CLK#
VIH VIL
WR tDQSS tWPREH DQSx tWPRES "Preamble" "Postamble" tWPST VIH VTT VIL
DQx
Q
Q+1
Q+2
Q+3
VIH VTT VIL
Figure 8
DQS Pre/Postamble at Write
Data Sheet
19
V1.7, 2003-07
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5] 128 Mbit DDR SGRAM [4M x 32]
Register Set
3.5 3.5.1
Description of Timings Power-Up Sequence
The following sequence is highly recommended for Power-Up: 1. Apply power and start clock. Maintain CKE=L and the other pins are in NOP conditions at the input 2. Apply VDD before or at the same time as VDDQ, apply VDDQ before or at the same time as VREF & VTT 3. Start clock, maintain stable conditions for 200 s min. 4. Apply NOP and set CKE to high 5. Apply a Precharge All command 6. Issue EMRS (extended mode register set) command to enable the DLL 7. Issue a Mode Register Set command for "DLL reset". 200 cycles of clock input are required to lock the DLL. 8. Issue Precharge commands for all banks of the device. 9. Issue two or more Auto-Refresh commands. 10. Issue a Mode Register Set command. (This step may also be taken as step 6)
Clock
any Comm.
Command
NOP
PREA
EMRS
DLL Reset
PREA
ARef
ARef
MRS
tRP
tMRD
2 Clock min.
tRP
tRFC
tRFC
tMRD
200 Clock min.
Figure 9
Power-Up Sequence
3.5.2
Mode Register Set Timing
The DDR SGRAM should be activated with CKE already high prior to writing into the mode register. Two clock cycles are required to complete the write operation in the mode register. The mode register contents can be changed using the same command and clock cycle requirements during operation as long as all banks are in the idle state.
Clk
any Comm.
Command
NOP
PREA
NOP
MRS
NOP
NOP
tRP
tMRD
Figure 10
Mode Register Set Timing
3.5.3
Extended Mode Register Set Timing
The timing of the Extended Mode Register Setup operation is equivalent to the Mode Register Setup timing.
Data Sheet
20
V1.7, 2003-07
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5] 128 Mbit DDR SGRAM [4M x 32]
Register Set
3.5.4
Bank Activation Command (ACT)
The Bank Activation command is initiated by issuing an ACT command at the rising edge of the clock. The DDR SGRAM has four independent banks which are selected by the two Bank select Addresses (BA0, BA1). The Bank Activation command must be applied before any Read or Write operation can be executed. The delay from the Bank Activation command to the first read or write command must meet or exceed the minimum of RAS to CAS delay time (tRCDDC min. for read commands and tRCDWR min. for write commands). Once a bank has been activated, it must be precharged before another Bank Activate command can be applied to the same bank. The minimum time interval between interleaved Bank Activate commands (Bank A to Bank B and vice versa) is the Bank to Bank activation delay time (tRRD min).
Clk
Command
ACT
READ or WRITE
PRE
NOP
ACT
tRCDRD for read tRCDWR for write
Addresses
Bank A Row Add.
Bank A Col. Add.
Bank A
Bank A Row Add.
tRC
Figure 11
Activate to Read or Write Command Timing (one bank)
Clk
Command
ACT
NOP
ACT
Addresses
Bank B Row Add.
Bank A Row Add.
tRRD
Figure 12
Activate Bank A to Activate Bank B Timing
3.5.5
Precharge Command
This command is used to precharge or close a bank that has been activated. Precharge is initiated by issuing a Precharge command at the rising edge of the clock. The Precharge command can be used to precharge each bank respectively or all banks simultaneously. The Bank addresses BA0 and BA1 select the bank to be precharged. After a Precharge command, the analog delay tRP has to be met until a new Activate command can be initiated to the same bank.
Data Sheet
21
V1.7, 2003-07
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5] 128 Mbit DDR SGRAM [4M x 32]
Register Set
Table 5 A8/AP 0 0 0 0 1
Precharge Control BA1 0 0 1 1 X BA0 0 1 0 1 X Precharged Bank A Only Bank B Only Bank C Only Bank D Only All Banks
Clk
Command
ACT
NOP
PRE
NOP
ACT
Addresses
Bank A Row Add
Bank A
Bank A Row Add
tRAS tRC
tRP
Figure 13
Precharge Command Timing
3.5.6
Self Refresh
The self refresh mode can be used to retain the data in the DDR SGRAM if the chip is powered down. To set the DDR SGRAM into a self refreshing mode, a Self Refresh command must be issued and CKE held low at the rising edge of the clock. Once the self Refresh command is initiated, CKE must stay low to keep the device in Self Refresh mode. During the Self refresh mode, all of the external control signals are disabled except CKE. The clock is internally disabled during Self Refresh operation to reduce power. An internal timing generator guarantees the self refreshing of the memory content. To exit the Self Refresh mode, a stable external clock is needed for the DLL before returning CKE high. After the Power Down Exit time(tPDEX), a Deselect or NOP command is issued and CKE is held high for longer than tSREX in order to lock the DLL.
Data Sheet
22
V1.7, 2003-07
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5] 128 Mbit DDR SGRAM [4M x 32]
Register Set
Clk
Command
NOP
SELF REFRESH
NOP DESEL
NOP DESEL
NOP DESEL
NOP DESEL
Any Comm.
CKE
tSREX
Figure 14
Self Refresh timing
3.5.7
Auto Refresh
The auto refresh function is initiated by issuing an Auto Refresh command at the rising edge of the clock. All banks must be precharged and idle before the Auto Refresh command is applied. No control of the external address pins is required once this cycle has started. All necessary addresses are generated in the device itself. When the refresh cycle has completed, all banks will be in the idle state. A delay between the Auto Refresh command and the next Activate Command or subsequent Auto Refresh Command must be greater than or equal to the tRFC(min).
Clk
Command
NOP
PRECHARGE
AUTO REFRESH
Command
NOP
CKE
Command is AUTOREFRESH or ACT tRP tRFC
Figure 15
Autorefresh timing
3.5.8
Power Down Mode
The Power Down Mode is entered when CKE is set low and exited when CKE is set high. The CKE signal is sampled at the rising edge of the clock. Once the Power Down Mode is initiated, all of the receiver circuits except CLK, CKE and DLL circuits are gated off to reduce power consumption. All banks can be set to idle state or stay activate during Power Down Mode, but burst activity may not be performed. After exiting from Power Down Mode, at least one clock cycle of command delay must be inserted before starting a new command. During Power Down Mode, refresh operations cannot be performed; therefore, the device cannot remain in Power Down Mode longer than the refresh period (tREF) of the device.
Data Sheet
23
V1.7, 2003-07
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5] 128 Mbit DDR SGRAM [4M x 32]
Register Set
Clk
Command
PRE
NOP
NOP
NOP DESEL
Any Command
NOP DESEL
CKE
Power Down Mode entry Power Down Mode exit
tPDEX
Figure 16
Power Down Mode timing
3.5.9
Burst Mode Operation
Burst mode operation is used to provide a constant flow of data to the memory (write cycle) or from the memory (read cycle). The burst length is programmable and set by address bits A0 - A3 during the Mode Register Setup command. The burst length controls the number of words that will be output after a read command or the number of words to be input after a write command. One word is 32 bits wide. The sequential burst length can be set to 2, 4 or 8 data words. Table 6 Burst Mode and Sequence Starting Column Address A2 2 4 0 0 1 1 8 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 A1 A0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 Order of Access within a Burst Type = Sequential 0-1 1-0 0-1-2-3 1-2-3-0 2-3-0-1 3-0-1-2 0-1-2-3-4-5-6-7 1-2-3-4-5-6-7-0 2-3-4-5-6-7-0-1 3-4-5-6-7-0-1-2 4-5-6-7-0-1-2-3 5-6-7-0-1-2-3-4 6-7-0-1-2-3-4-5 7-0-1-2-3-4-5-6
Burst Length
3.5.10
Burst Read Operation: (READ)
The Burst Read operation is initiated by issuing a READ command at the rising edge of the clock after tRCD from the bank activation. The address inputs (A7.. A0) determine the starting address for the burst. The burst length (2, 4 or 8) must be defined in the Mode Register. The first data after the READ command is available depending on the CAS latency. The subsequent data is clocked out on the rising and falling edge of DQSx until the burst is completed. The DQSx signal is generated by the DDR SGRAM during Burst Read Operations. Data Sheet 24 V1.7, 2003-07
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5] 128 Mbit DDR SGRAM [4M x 32]
Register Set
CLK
Command
Read
NOP CL = 2
NOP
NOP
NOP
NOP
NOP
NOP
Read Postamble DQSx CAS latency = 2 DQx D-out 0 CL = 3 D-out 1 D-out 2 D-out 3 Burst length = 4 Read Preamble
Read Postamble Read Preamble
DQSx CAS latency = 3 DQx
D-out 0
D-out 1
D-out 2
D-out 3
CL = 4
Read Postamble Read Preamble
DQSx CAS latency = 4 DQx
D-out 0
D-out 1
D-out 2
D-out 3
Figure 17
Burst Read Operation
3.5.11
Burst Write Operation (WRITE)
The Burst Write is initiated by issuing a WRITE command at the rising edge of the clock. The address inputs (A7.. A0) determine the starting column address. Data for the first burst write cycle must be applied on the DQ pins on the first rising edge of DQSx following the WRITE command. The time between the WRITE command and the first corresponding edge of the data strobe is tDQSS. The remaining data inputs must be supplied on each subsequent rising and falling edge of the data strobe until the burst length is completed. When the burst has been finished, any additional data supplied to the DQ pins will be ignored.
Data Sheet
25
V1.7, 2003-07
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5] 128 Mbit DDR SGRAM [4M x 32]
Register Set
CLK
WRITE tDQSS DQSx tWPRES
NOP
NOP tWPST
NOP
tWPREH
DQx
Data-in 0
Data-in 1
Data-in 2
Data-in 3 Burst length = 4
Figure 18
Burst Write Operation
3.5.12
Burst Stop Command (BST)
A Burst Stop is initiated by issuing a BURST STOP command at the rising edge of the clock. The Burst Stop Command has the fewest restrictions, making it the easiest method to terminate a burst operation before it has been completed. When the Burst Stop Command is issued during a burst read cycle, read data and DQSx go to a high impedance state after a delay which is equal to the CAS Latency set in the Mode Register. The Burst Stop latency is equal to the CAS latency CL.The Burst Stop command is not supported during a write burst operation. Burst Stop is also illegal during Read with Auto-Precharge.
Data Sheet
26
V1.7, 2003-07
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5] 128 Mbit DDR SGRAM [4M x 32]
Register Set
CLK
Command
READ CL = 2
BST
NOP
NOP
NOP
NOP
NOP
NOP
Burst Stop Latency = 2 DQSx CAS latency = 2 DQx CL = 3 Burst Stop Latency = 3 DQSx CAS latency = 3 DQx D-out 0 D-out 1 D-out 0 D-out 1
Burst Stop Latency = 4 DQSx CAS latency = 4 DQx D-out 0 D-out 1
Burst length = 4
Figure 19
Burst Stop for Read
3.5.13
Data Mask (DMx) Function
The DDR SGRAM has a Data Mask function that can be used only during write cycles. When the Data Mask is activated (DMx high) during burst write, the write operation is masked immediately. The DMx to data-mask latency is zero. DMx can be issued at the rising or falling edge of Data Strobe.
Data Sheet
27
V1.7, 2003-07
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5] 128 Mbit DDR SGRAM [4M x 32]
Register Set
CLK
Command
WRITE
NOP
NOP
NOP
NOP
NOP
NOP
NOP
DQSx
DQx
D-in 0
D-in 1
D-in 2
D-in 3
D-in 4
D-in 5
D-in 6
D-in 7
DMx
Data is masked out
Burst length = 8
Figure 20
Data Mask Timing
3.5.14
Autoprecharge Operation
The Autoprecharge command is issued by setting column address A8 high when a Read or a Write command is asserted to the DDR SGRAM. If A8 is low when Read or Write command is issued, a normal Read or Write burst operation is executed and the bank remains active at the end of the burst sequence. When the Auto Precharge command is activated, the active bank automatically begins to precharge at the earliest possible moment during the Read or Write cycle after tRAS(min.) is satisfied.
3.5.15
Read with Autoprecharge (READA)
If a Read with Auto-precharge command is initiated, the DDR SGRAM automatically enters the precharge operation BL/2 clock cycles after the READA command and tRAS(min.) is satisfied. If tRAS(min.) has not been satisfied yet, an internal interlock will delay the precharge operation until it is satisfied. Once the precharge operation has started, the bank cannot be reactivated and the new command can not be asserted until the Precharge time (tRP) has been satisfied.
Data Sheet
28
V1.7, 2003-07
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5] 128 Mbit DDR SGRAM [4M x 32]
Register Set
CLK
Command
READA
NOP
NOP
NOP
NOP
NOP
NOP
ACT
CL = 2
DQSx CAS latency = 2 DQx D-out 0 CL = 3 D-out 1 D-out 2 D-out 3
DQSx CAS latency = 3 DQx D-out 0 CL = 4 D-out 1 D-out 2 D-out 3
DQSx CAS latency = 4 DQx BL / 2 D-out 0 D-out 1 t RP D-out 2 D-out 3
Burst length = 4
Begin of Autoprecharge
Bank can be activated after completion of precharge
Figure 21
Read Burst with Autoprecharge
Data Sheet
29
V1.7, 2003-07
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5] 128 Mbit DDR SGRAM [4M x 32]
Register Set
Burst length = 4
T0 CLK T1
CAS latency = 3
T2 T3 T4 T5 T6 T7 T8
Command
BANK A ACTIVATE
NOP
NOP t RCD(min) t RAS(min)
READ A + AP
NOP
NOP
NOP
NOP
NOP
t RP
BL / 2
Begin of Auto Precharge
DQSx CL = 3 DQx D-out 0 D-out 1 D-out 2 D-out 3
Figure 22 Table 7 Asserted Command READ READ+AP ACTIVATE
Read Concurrent Auto Precharge Concurrent Read Auto Precharge Support For same Bank T4 NO YES NO YES T5 NO YES NO YES T6 NO NO NO NO For different Bank T4 NO NO YES YES T5 YES YES YES YES T6 YES YES YES YES
PRECHARGE
Note: This table is for the case of Burst Length = 4, CAS Latency =3 and tWR=2 clocks When READ with Auto Precharge is asserted, new commands can be asserted at T4,T5 and T6 as shown in Table 7. An Interrupt of a running READ burst with Auto Precharge i.e. at T4 and T5 to the same bank with another READ+AP command is allowed, it will extend the begin of the internal Precharge operation to the last READ+AP command. Interrupts of a running READ burst with Auto Precharge i.e. at T4 are not allowed when doing concurrent command to another active bank. ACTIVATE or PRECHARGE commands to another bank are always possible while a READ with Auto Precharge operation is in progress.
3.5.16
Write with Autoprecharge (WRITEA)
If A8 is high when a Write command is issued, the Write with Auto-Precharge function is performed. The internal precharge begins after the write recovery time tWR and tRAS(min.) are satisfied. If a Write with Auto Precharge command is initiated, the DDR SGRAM automatically enters the precharge operation at the first rising edge of CLK after the last valid edge of DQS (completion of the burst) plus the write recovery time tWR. Once the precharge operation has started, the bank cannot be reactivated and the new command can not be asserted until the Precharge time (tRP) has been satisfied. If tRAS(min.) has not been satisfied yet, an internal interlock will delay the precharge operation until it is satisfied. Data Sheet 30 V1.7, 2003-07
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5] 128 Mbit DDR SGRAM [4M x 32]
Register Set
Burst length = 4
T0 CLK T1 T2 T3 T4 T5 T6 T7 T8
Command
BANK A ACTIVATE
NOP
WRITE A + AP
NOP
NOP
NOP
NOP
NOP
NOP
t RAS(min) t WR t RP
BL / 2 Begin of Auto Precharge DQSx
DQx
D-in 0
D-in 1
D-in 2
D-in 3
Figure 23
Write Burst with Auto Precharge
Note: tWR starts at the first rising edge of clock after the last valid edge of the 4 DQSx. Table 8 Asserted Command WRITE WRITE+AP READ READ+AP ACTIVATE PRECHARGE Concurrent Write Auto Precharge Support For same Bank T3 NO YES NO NO NO NO T4 NO NO NO NO NO NO T5 NO NO NO NO NO NO T6 NO NO NO NO NO NO T7 NO NO NO NO NO NO T8 NO NO NO NO NO NO For different Bank T3 NO NO NO NO YES YES T4 YES YES NO NO YES YES T5 YES YES NO NO YES YES T6 YES YES NO NO YES YES T7 YES YES YES YES YES YES
When Write with Auto Precharge is asserted, new commands can be asserted at T3.. T8 as shown in Table 8. An Interrupt of a running WRITE burst with Auto Precharge i.e. at T3 to the same bank with another WRITE+AP command is allowed as long as the burst is running, it will extend the begin of the internal Precharge operation to the last WRITE+AP command. Interrupts of a running WRITE burst with Auto Precharge i.e. at T3 are not allowed when doing concurrent WRITE's to another active bank. Consecutive WRITE or WRITE+AP bursts (T4.. T7) to other open banks are possible. ACTIVATE or PRECHARGE commands to another bank are always possible while a WRITE with Auto Precharge operation is in progress.
3.6 3.6.1
Burst Interruption Read Interrupted by a Read
A Burst Read can be interrupted before completion of the burst by a new Read command given to any bank. When the previous burst is interrupted, the remaining addresses are overridden by the new address with the full burst length. The data from the first Read command continues to appear on the outputs until the CAS latency from the
Data Sheet
31
V1.7, 2003-07
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5] 128 Mbit DDR SGRAM [4M x 32]
Register Set interrupting Read command is satisfied. At this point, the data from the interrupting Read command appears. Read to Read interval (CAS#(a) to CAS#(b) Command period, tCCD) is minimum 1 CLK.
CLK
Command
READ a tCCD
READ b
NOP
NOP
NOP
NOP
DQSx
DQx
D-out a0
D-out a1
D-out b0
D-out b1
D-out b2
D-out b3 Burst length = 4 CL = 2
Figure 24
Read interrupted by Read
3.6.2
Read Interrupted by a Write
To interrupt a burst read with a write command, a Burst Stop command must be asserted to avoid data contention on the I/O bus by placing the DQ's (Output drivers) in a high impedance state at least one clock cycle before the Write Command is initiated (Last Output to Write Command Latency). To insure that the DQs are tri-stated one cycle before the write operation begins, the Burst Stop command must be applied at least 3 clock cycles for CL = 2, at least 4 clock cycles for CL = 3 or at least 5 clock cycles for CL = 4 before the Write command.
CLK
Command
READ
BST
NOP Burst Stop latency = CL
NOP
WRITE
NOP
NOP
NOP
DQSx
DQx
D-out 0
D-out 1
D-in 0
D-in 1
D-in 2
D-in 3 Burst length = 4 CL = 2
Burst Stop to Write command latency
Figure 25
Read interrupted by Write
Data Sheet
32
V1.7, 2003-07
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5] 128 Mbit DDR SGRAM [4M x 32]
Register Set
3.6.3
Read Interrupted by a Precharge
A Burst Read operation can be interrupted by a Precharge of the same bank. The Read command to Precharge time is minimum 1 clock cycle. The Precharge command disables the data output depending on the CAS latency. Once the last data bit has been outputted, the output buffers are tristated. A new Bank Activate command may be issued to the same bank after tRP.
CLK
Command
READ
NOP
PRE
NOP Precharge latency = CL
NOP
ACT
NOP
First possible ACT command
DQSx
DQx
D-out 0
D-out 1
D-out 2
D-out 3 tRP Burst length = 8 CL = 2
Figure 26
Read interrupted by Precharge
3.6.4
Write Interrupted by a Write
A Burst Write can be interrupted before completion of the burst by a new Write Command. The minimum distance between two different Write commands is one clock cycle. When the previous burst is interrupted, the remaining addresses are overridden by the new address and data will be written into the device until the programmed burst length is satisfied. The Write to Write interval (CAS a to CAS b command period) is defined by the parameter tCCD.
CLK
Command
WRITE a tCCD
WRITE b
NOP
NOP
NOP
DQSx
DQx
D-in a0
D-in a1
D-in b0
D-in b1
D-in b2
D-in b3 Burst length = 4
Figure 27
Write interrupted by Write
Data Sheet
33
V1.7, 2003-07
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5] 128 Mbit DDR SGRAM [4M x 32]
Register Set
3.6.5
Write Interrupted by a Read
A Burst Write can be interrupted by a Read command sent to any bank. The DQs must be in the high impedance state at least one clock cycle before the data of the interrupting read appears on the outputs to avoid data contention. Before the Read Command is registered, any residual data from the burst write cycle must be masked by DMx. Data that is presented on the DQ pins before the Read command is initiated, will actually be written to the memory.
CLK
Command
Write tDQSS
NOP
NOP Last valid data tWTR
Read
NOP CL = 2
NOP
NOP
DQSx
DQx
D-in 0
D-in 1
D-in 2
D-in 3
D-in 4
D-in 5
D-out 0
D-out 1
DMx Data must be masked Data is masked by Read Burst length = 8 CL = 2
Figure 28
Write interrupted by Read
3.6.6
Write Interrupted by a Precharge
A Burst Write operation can be interrupted before completion of the burst by a Precharge of the same bank. Random column access is allowed. A Write Recovery time (tWR) is required from the last data to Precharge command. When Precharge command is asserted, any residual data from the burst write cycle must be masked by DMx.
Data Sheet
34
V1.7, 2003-07
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5] 128 Mbit DDR SGRAM [4M x 32]
Register Set
CLK
Command
Write bank A tDQSS
NOP
NOP Last valid data
NOP tWR
PRE
Write bank B tDQSS
NOP
NOP
DQSx
DQx
D-in 0
D-in 1
D-in 2
D-in 3
D-in 4
D-in 5
D-in 0
D-in 1
DMx Data must be masked Data is masked by Precharge Burst length = 8
Figure 29
Write interrupted by Precharge
3.7
Table 9 Operation
Operations and Functions
Command Overview Code DESEL NOP MRS CKE n-1 H H H H H H H H H H H H H H L L CKE n X X X X X X X X X X X X H L H H CS# H L L L L L L L L L L L L L H L RAS# CAS# WE# X H L L L L H L H H L L L L X H X H L L H H L H L H H H L L X H X H L L H H H H H L L L H H X H BA0 X X 0 1 BA BA BA BA BA X BA X X X X X BA1 X X 0 0 BA BA BA BA BA X BA X X X X X A8 X X A0-7 A9-11 X X
Device Deselect No Operation Mode Register Setup
OPCODE OPCODE Row Address L H L H X L H X X X X Col. Col. Col. Col. X X X X X X X
Extended Mode Register MRS Setup Bank Activate Read Read with Auto Precharge Write Command Write Command with Auto Precharge Burst Stop Precharge Single Bank Precharge All Banks Auto Refresh Self Refresh Entry Self Refresh Exit ACT READ READA WRITE WRITEA BST PRE PREAL AREF SREFEN SREFEX
Data Sheet
35
V1.7, 2003-07
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5] 128 Mbit DDR SGRAM [4M x 32]
Register Set Table 9 Operation Command Overview (cont'd) Code CKE n-1 H H L CKE n L L H CS# H L H L RAS# CAS# WE# X H X valid X H X valid X H X valid BA0 X X X BA1 X X X A8 X X X A0-7 A9-11 X X X
Power Down Mode Entry PWDNEN (Note) Power Down Mode Exit PWDNEX
Note: The Power Down Mode Entry command is illegal during Burst Read or Burst Write operations.
3.8
Function Truth Tables
Table 10 lists all abbreviations used in Table 11 and Table 12. Table 10 H L X V RA BA PA NOP CA Ax Table 11 IDLE Abbreviations High Level Low Level Don't Care Valid Data Input Row Address Bank Address Precharge All No Operation Column Address Address Line x Function Truth Table I Command DESEL NOP BST READ / READA WRITE / WRITEA ACT PRE / PREAL AREF / SREF MRS / EMRS Address X X X BA,CA,A8 BA,CA,A8 BA, RA BA, A8 X Op-Code Action NOP NOP NOP ILLEGAL ILLEGAL Bank Active NOP AUTO-Refresh or Self-Refresh Mode Register Set or Extended Mode Register Set
4)5)
Current State
Notes
3)1) 3)2) 3) 1)4) 1)
3) 3) 1)
1)
4)
Data Sheet
36
V1.7, 2003-07
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5] 128 Mbit DDR SGRAM [4M x 32]
Register Set Table 11 Function Truth Table I (cont'd) Command DESEL NOP BST READ / READA WRITE / WRITEA ACT PRE / PREAL AREF / SREF MRS / EMRS READ DESEL NOP BST READ / READA WRITE / WRITEA ACT PRE / PREAL AREF / SREF MRS / EMRS READ with DESEL Auto Precharge NOP BST READ / READA WRITE / WRITEA ACT PRE / PREAL AREF / SREF MRS / EMRS WRITE DESEL NOP BST READ / READA WRITE / WRITEA ACT PRE / PREAL AREF / SREF MRS / EMRS Address X X X BA, CA, A8 BA, CA, A8 BA, RA BA, A8 X OP-Code X X X BA, CA, A8 BA, CA, A8 BA, RA BA ,A8 X Op-Code X X BA BA, CA, A8 BA, CA, A8 BA, RA BA ,A8 X Op-Code X X X BA, CA, A8 BA, CA, A8 BA, RA BA ,A8 X OP-Code Action NOP NOP NOP Begin Read, Determine Auto Precharge Begin Write, Determine Auto Precharge ILLEGAL Precharge / Precharge All ILLEGAL ILLEGAL Continue burst to end Continue burst to end Terminate Burst Terminate burst, Begin New Read, Determine Auto-Prechgarge ILLEGAL ILLEGAL Terminate Burst / Precharge ILLEGAL ILLEGAL Continue burst to end, Precharge Continue burst to end, Precharge ILLEGAL ILLEGAL ILLEGAL ILLEGAL ILLEGAL ILLEGAL ILLEGAL Continue burst to end Continue burst to end ILLEGAL Terminate Burst, Begin Read, Determine Auto-Precharge. Terminate Burst, Begin new Write, Determine Auto-Precharge ILLEGAL Terminate Burst , Precharge ILLEGAL ILLEGAL
7), 8) 1) 1) 7)8) 9)6) 9)
Current State ROW ACTIVE
Notes
9) 1), 5)
9) 6)
1), 5) 6)7)
7) 2), 7)
2), 7)9) 1)
1)
1) 1)
7), 8) 2), 7)
2), 7)
1) 8)
1) 8)
Data Sheet
37
V1.7, 2003-07
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5] 128 Mbit DDR SGRAM [4M x 32]
Register Set Table 11 Function Truth Table I (cont'd) Command DESEL NOP BST READ / READA WRITE / WRITEA ACT PRE / PREAL AREF / SREF MRS / EMRS ROW ACTIVATING DESEL NOP BST READ / READA WRITE / WRITEA ACT PRE / PREAL AREF / SREF MRS / EMRS PRECHARGE DESEL NOP BST READ / READA WRITE / WRITEA ACT PRE / PREAL AREF / SREF MRS / EMRS WRITE DESEL RECOVERING NOP BST READ / READA WRITE / WRITEA ACT PRE / PREAL AREF / SREF MRS / EMRS Address X X X BA, CA, A8 BA, CA, A8 BA, RA BA ,A8 X OP-Code X X X BA, CA, A8 BA, CA, A8 BA, RA BA ,A8 X OP-Code X X X BA, CA, A8 BA, CA, A8 BA, RA BA ,A8 X OP-Code X X X BA, CA, A8 BA, CA, A8 BA, RA BA ,A8 X OP-Code Action Continue burst to end, Precharge Continue burst to end, Precharge ILLEGAL ILLEGAL ILLEGAL ILLEGAL ILLEGAL ILLEGAL ILLEGAL NOP ( Row Active after tRCD) NOP ( Row Active after tRCD) NOP ( Row Active after tRCD) ILLEGAL ILLEGAL ILLEGAL ILLEGAL ILLEGAL ILLEGAL NOP ( Row Idle after tRP) NOP ( Row Idle after tRP) NOP ( Row Idle after tRP) ILLEGAL ILLEGAL ILLEGAL NOP ( Row Idle after tRP) ILLEGAL ILLEGAL NOP (Row Active after tWR) NOP (Row Active after tWR) NOP (Row Active after tWR) Begin Read, Determine Auto-Prechgarge Begin Write, Determine Auto-Prechgarge ILLEGAL ILLEGAL ILLEGAL ILLEGAL
2) 2) 1) 1) 1) 1) 1), 9) 1), 9) 1), 5) 1), 6) 1) 1)
Current State WRITE with Autoprecharge
Notes
1) 1)
1), 9) 1), 9) 1), 5) 1), 6)
1) 1) 1) 1)
2) 2)
1),10)
Data Sheet
38
V1.7, 2003-07
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5] 128 Mbit DDR SGRAM [4M x 32]
Register Set Table 11 Function Truth Table I (cont'd) Command Address X X X BA, CA, A8 BA, CA, A8 BA, RA BA ,A8 X OP-Code X X X BA, CA, A8 BA, CA, A8 BA, RA BA ,A8 X OP-Code X X X BA, CA, A8 BA, CA, A8 BA, RA BA ,A8 X OP-Code Action NOP (Precharge after tWR) NOP (Precharge after tWR) NOP (Precharge after tWR) ILLEGAL ILLEGAL ILLEGAL ILLEGAL ILLEGAL ILLEGAL NOP (Idle after tRC) NOP (Idle after tRC) NOP (Idle after tRC) ILLEGAL ILLEGAL ILLEGAL ILLEGAL ILLEGAL ILLEGAL NOP (Idle after two clocks) NOP (Idle after two clocks) NOP (Idle after two clocks) ILLEGAL ILLEGAL ILLEGAL ILLEGAL ILLEGAL ILLEGAL
11) 1), 2) 1) 1) 1)
Current State
Notes
DESEL WRITE RECOVERING NOP with AutoBST precharge READ / READA WRITE / WRITEA ACT PRE / PREAL AREF / SREF MRS / EMRS REFRESH DESEL NOP BST READ / READA WRITE / WRITEA ACT PRE / PREAL AREF / SREF MRS / EMRS (EXTENDED MODE REGISTER SET) DESEL NOP BST READ / READA WRITE / WRITEA ACT PRE / PREAL AREF / SREF MRS / EMRS
1) Illegal to bank specified states; function may be legal in the bank indicated by BAx, depending on the state of that bank 2) Must satisfy bus contention, bus turn around, write recovery requirements. 3) If both banks are idle, and CKE is inactive, the device will enter Power Down Mode. All input buffers except CKE, CLK and CLK# will be disabled. 4) If both banks are idle, and CKE is deactivated coincidentally with an AutoRefresh command, the device will enter SelfRefresh Mode. All input buffers except CKE will be disabled. 5) Illegal, if tRRD is not satisfied. 6) Illegal, if tRAS is not satisfied. 7) Must satisfy burst interrupt condition. 8) Must mask two preceding data bits with the DM pin. 9) Illegal, if tRCD is not satisfied. 10) Illegal, if tWR is not satisfied. 11) Illegal, if tRC is not satisfied.
Note: All entries assume the CKE was High during the preceding clock cycle Data Sheet 39 V1.7, 2003-07
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5] 128 Mbit DDR SGRAM [4M x 32]
Register Set
Table 12 Current State SELF REFRESH
Function Truth Table for CKE CKE n-1 H L L L L L L CKE n X H H H H H L X H L H L L L L L L X H CS# X H L L L L X X X X X L H L L L L X X RAS # X X H H H L X X X X X L X H H H L X X CAS # X X H H H L X X X X X L X H H L X X X WE# X X H X X X X X X X X H X H L X X X X Address Action X X X X X X X X X X X X X X X X X X X INVALID Exit Self-Refresh ( Idle after tSRX) Exit Self-Refresh ( Idle after tSRX) ILLEGAL ILLEGAL ILLEGAL NOP ( Maintain Self Refresh) INVALID Exit Power Down ( Idle after tPDEX) NOP ( Maintain Power Down) Refer to Function Truth Table Enter Self Refresh Enter Power-Down Enter Power-Down ILLEGAL ILLEGAL ILLEGAL Refer to Power Down in this table Refer to Funtion Truth Table
2) 3) 2) 2) 2) 2) 2)
Notes
1) 1) 1) 1) 1) 1) 1)
POWER DOWN
H L L H H H H H H H L
ALL BANKS IDLE
All other states
H
1) CKE low-to-high transition re-enables inputs asynchronously. A minimum setup time to CLK must be satisfied before any commands other than EXIT are executed. 2) Power Down can be entered when all banks are idle (banks can be active or precharged) 3) Self Refresh can be entered only from the Precharge / Idle state.
Data Sheet
40
V1.7, 2003-07
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5] 128 Mbit DDR SGRAM [4M x 32]
Register Set
3.9
DDR SGRAM Simplified State Diagram
SELF REFRESH SREFEN SREFEX MODE REGISTER SET MRS IDLE AUTO REFRESH CKEL ACT CKEH CKEH CKEL
POWER
AREF
DOWN
ROW ACTIVE WRITE WRITEA
READ READA READ
BST
WRITE
READ READA
WRITEA READA PRE PRE PRE
WRITEA
READA
POWER ON
PRE
PRE CHARGE
Automatic Sequence Command Sequence
Figure 30
DDR SGRAM Simplified State Diagram
Data Sheet
41
V1.7, 2003-07
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5] 128 Mbit DDR SGRAM [4M x 32]
Electrical Characteristics
4
Table 13 Parameter
Electrical Characteristics
Absolute Maximum Ratings Symbol min. Values typ. - - - - - - 1.4 50 max. -0.5 -0.5 -0.5 -0.5 0 -55 - - Unit Note/ Test Condition - - - - - - - -
Voltage on I/O pins relative to VSS Voltage on Inputs relative to VSS Voltage on VDD supply relative to VSS Voltage on VDDQ supply relative to VSS Operating Temperature (Ambient) Storage Temperature (Plastic) Power Dissipation Short Circuit Output Current
VIN, VOUT VIN VDD VDDQ TA TSTG PD IOUT
VDDQ + V
0.5 +3.6 +3.6 +3.6 +70 +150 - - V V V C C W mA
Attention: Stresses above those listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the integrated circuit. Table 14 Parameter Power Supply Voltage Power & DC Operation Conditions Symbol min. VDD VDD VDD VDD Power Supply Voltage for I/O Buffer Reference Voltage Termination Voltage Input leakage current CLK Input leakage current Output leakage current Input logic high voltage, DC Input logic low voltage, DC VDDQ VREF VTt IIL IILC IOL VIH VIL 2.38 2.38 2.5 2.5 2.38 0.49 x VDDQ VREF - 0.04 -5 -5 -5 VSSQ - 0.3 Values typ. max. 2.5 2.5 -- -- 2.5 2.63 2.63 2.9 2.9 2.63 V V V V V V L3.6, L4.52) -3.6, -4.5, -5 2) -3.6, L3.6 2)3) -3, -3.3 2)
2) 4) 5) 6)
Unit Notes 1)
1.25 0.51 x VDDQ -- -- -- -- 5 5 5 VDDQ + 0.3 VREF - 0.15
VREF VREF + 0.04 V A A A V V
7)
-- -- --
8) 9)
VREF + 0.15 --
Output Levels: Matched Impedance Mode 2.5V High Current at VOUT = VDDQ-0,373V Low Current at VOUT = 0.373V Output Levels: SSTL2 Weak Mode 2.5V High Current at VOUT = VDDQ - 0,373V Low Current at VOUT = 0.373V IOH IOL -5 5 -- -- -- -- mA mA -- -- IOH IOL -5 5 -- -- -- -- mA mA -- --
Data Sheet
42
V1.7, 2003-07
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5] 128 Mbit DDR SGRAM [4M x 32]
Electrical Characteristics
1) TA = 0 to 70 C; VSS = 0 V 2) Under all conditions, VDDQ must be less than or equal to VDD 3) The speed sorts L3.6 and -3.6 support both VDD modes: 2.5V 5% and 2.5V - 2.9V 4) VDDQ = 2.5 V -/+5% 5) Typically the value of VREF is expected to be 0.5 * VDDQ of the transmitting device. VREF is expected to track variations in
VDDQ
6) Peak to peak AC noise on VREF may not exceed 2% VREF (DC) 7) VTT of the transmitting device must track VREF of the receiving device 8) Overshoots of VIH must be limited to a voltage < (VDDQ + 1.5 V) and a pulse width < 0.33 of the clock pulse 9) Undershoots of VIL must be limited to a voltage > -1.5 V and a pulse width < 0.33 of the clock pulse
Table 15 Parameter
AC Operation Conditions Symbol min. VIH VREF + 0.50 VREF + 0.60 VREF + 0.50 Values typ. max. -- -- -- -- -- -- -- -- -- -- VDDQ + 0.3 VDDQ + 0.3 VDDQ + 0.3 VREF - 0.50 VREF - 0.60 VREF - 0.50 VDDQ + 0.6 VDDQ + 0.6 VDDQ + 0.6 VDDQ + 0.6 V V V V V V V V V V V L3.6, L4.5 -5.0 -3, -3.3, -3.6, -4.5 L3.6, L4.5 -5.0 -3, -3.3, -3.6, -4.5 L4.5 L3.6 -4.5, -5.0 -3, -3.3, -3.6, -4.5 -- -- Unit Notes
Input logic high voltage
Input logic low voltage
VIL
VSSQ - 0.3 VSSQ - 0.3 VSSQ - 0.3
Clock Differential Input Voltage (CLK/CLK)
VID
1.2 1.0 1.2 1.0
Clock Input Crossing Point (CLK/CLK) I/O Reference Voltage Input Slew Rate
VIX VREF
VREF - 0.2 1.0
VREF VREF + 0.2 -- --
0.49 x VDDQ --
0.51 x VDDQ V
rI
V/ns --
+ Vtt = 0.5xV DDQ
50 Ohm
DQ, DQS
Test point 15 pF
Figure 31 Table 16 Pin
Output Test Circuit Pin Capacitances min. 1.0 1.0 max. 2.5 2.5 Unit pF pF
A11.. A0, BA1, BA0, CKE, CS, CAS, RAS, WE CLK, CLK
Data Sheet
43
V1.7, 2003-07
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5] 128 Mbit DDR SGRAM [4M x 32]
Electrical Characteristics Table 16 Pin DQ0.. DQ31, DQS0 .. DQS3 DM0.. DM3 Table 17 Interface Parameter Pin Capacitances min. 1.0 1.0 max. 3.0 3.0 Unit pF pF
Timing Parameters for speed sorts -3, -3.3, -3.6, -4.5, and -5 -3 MIM -3.3 MIM -3.6 MIM -4.5 WM/MIM -5 WM/MIM Unit Note1) --
2)
Part Number Extension
Symbol min. max. min. max. min. max. min. max. min. max. --
--
Clock and Clock Enable Clock Cycle Time System frequency Clock high level width Minimum clock half period
tCK tCK fCK fCK tCH
3.0 4.0 200 200
5.0 5.0 333 250
3.3 4.0 200 200
5.0 5.0 300 250
3.6 4.2 200 200
5.0 5.0 278 238
4.5 4.5 183 183
5.5 5.5 222 222
5.0 5.0 183 183
5.5 5.5 200 200
ns ns
CL = 4 CL = 3
MHz CL = 4 MHz CL = 3 tCK tCK tCK -- -- --
0.45 0.55 0.45 0.55
0.45 0.55 0.45 0.55
0.45 0.55 0.45 0.55
0.45 0.55 0.45 0.55
0.45 0.55 0.45 0.55
Clock low level width tCL
tHP
tCH, tCL
--
tCH, tCL
--
tCH, tCL
--
tCH, tCL
--
tCH, tCL
--
Command and Address Setup and Hold Times Address and Command input setup time
tIS
0.65 --
0.65 --
0.75 --
1.0
--
1.0
--
ns
--
tIH Address and Command input hold time
Common Parameters Row Cycle Time Row Cycle Time in Auto Refresh Row Active Time ACTIVE to READ with Auto precharge command Row Precharge Time Activate(a) to Activate(b) Command period CAS(a) to CAS(b) Command period
0.65 --
0.65 --
0.75 --
1.0
--
1.0
--
ns
--
tRC tRFC tRAS tRAP
39 45 27
-- --
42.9 -- 49.5 --
46.8 -- 54 --
54 63
-- --
60 70
-- --
ns ns
-- -- -- --
15.7k 29.7 15.7k 32.4 15.7k 36
15.7k 40
15.7k ns ns
tRAS (min.)- (burst length * tCK /2)
tRP tRRD
12 9.0
-- --
13.2 -- 9.0 --
14.4 -- 9.0 --
18 9.0
-- --
20 9.0
-- --
ns ns
-- --
tCCD
1 6
-- --
1 6
-- --
1 6
-- --
1 6
-- --
1 6
-- --
tCK tCK
-- --
Last data in to Active tDAL (tWR + tRP) Data Sheet
44
V1.7, 2003-07
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5] 128 Mbit DDR SGRAM [4M x 32]
Electrical Characteristics Table 17 Interface Parameter Timing Parameters for speed sorts -3, -3.3, -3.6, -4.5, and -5 (cont'd) -3 MIM -3.3 MIM -3.6 MIM -4.5 WM/MIM -5 WM/MIM Unit Note1) --
2)
Part Number Extension
Symbol min. max. min. max. min. max. min. max. min. max. --
--
Read Cycle Timing Parameters for Data and Data Strobe Data Access Time from Clock DQS edge to Clock edge skew DQS Read Preamble DQS Read Postamble Row to Column Delay Time for Reads
tAC tDQSCK tRPRE tRPST tRCDDC
-0.5 -0.5 0.7 0.8 4
+0.5 +0.5 0.9 1.1 --
-0.5 -0.5 0.7 0.8 4
+0.5 +0.5 0.9 1.1 --
-0.55 +0.55 -0.7 -0.55 +0.55 -0.7 0.7 0.8 4 0.9 1.1 -- 0.7 0.8 4
+0.7 +0.7 0.9 1.1 --
-0.7 -0.7 0.7 0.8 4
+0.7 +0.7 0.9 1.1 --
ns ns tCK tCK tCK
-- -- -- -- --
DQS edge to output tDQSQ data edge skew Data hold skew factor Data Output Hold time from DQS
-- --
+0.3 0.33
-- --
+0.3 0.33
-- --
+0.33 -- 0.36 --
+0.45 -- 0.45 --
+0.5 0.5
ns ns ns
-- -- --
tQHS tQH
tHP-tQHS
tHP-tQHS
tHP-tQHS
tHP-tQHS
tHP-tQHS
Write Cycle Timing Parameters for Data and Data Strobe Row to Column Delay Time for Writes
tRCDWR
2
--
2
--
2
--
2
--
2
--
tCK
--
Clock to rising Edge tDQSS DQS (Write Latency) Data-in to DQS Setup Time
0.75 1.1 0.40 -- 0.40 --
0.75 1.1 0.40 -- 0.40 -- 0.40 -- 0.40 -- 0 --
0.75 1.1 0.40 -- 0.40 -- 0.40 -- 0.40 -- 0 --
0.75 1.25 0.6 0.6 0.6 0.6 0 -- -- -- -- --
0.75 1.25 0.6 0.6 0.6 0.6 0 -- -- -- -- --
tCK
ns ns ns ns
-- -- -- -- -- -- -- --
tQDQSS
Data-in to DQS Hold tQDQSH Time Data Mask to DQS Setup Time Data Mask to DQS Hold Time
tDMDQSS 0.40 -- tDMDQSH 0.40 --
0 --
Clock to DQS Write tWPRES Preamb. Setup Time Clock to DQS Write tWPREH Preamble Hold Time DQS Write Postamble Hold Time Write Recovery Time
tCK tCK tCK
0.25 -- 0.4 0.6
0.25 -- 0.4 0.6
0.25 -- 0.4 0.6
0.25 -- 0.4 0.6
0.25 -- 0.4 0.6
tWPST
tWR
2
--
2
--
2
--
2
--
2
--
tCK
3)
Data Sheet
45
V1.7, 2003-07
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5] 128 Mbit DDR SGRAM [4M x 32]
Electrical Characteristics Table 17 Interface Parameter Internal WRITE to READ command delay Write DQS High level Width Timing Parameters for speed sorts -3, -3.3, -3.6, -4.5, and -5 (cont'd) -3 MIM -3.3 MIM -- 1 -- -3.6 MIM 1 -- -4.5 WM/MIM 1 -- -5 WM/MIM 1 -- Unit Note1) --
2)
Part Number Extension
Symbol min. max. min. max. min. max. min. max. min. max. --
-- --
tWTR
1
tCK
tDQSH
0.35 0.65 0.35 0.65
0.35 0.65 0.35 0.65
0.35 0.65 0.35 0.65
0.35 0.65 0.35 0.65
0.35 0.65 0.35 0.65
tCK tCK
-- --
Write DQS Low level tDQSL Width Refresh Cycle Refresh Period (4096 cycles) Average periodic refresh interval Refresh to Refresh command interval
tREF tREFC tREFC
-- -- --
32 7.8 15.7
-- -- --
32 7.8 15.7
-- -- --
32 7.8 15.7
-- -- --
32 7.8 15.7
-- -- --
32 7.8 15.7
ms us s
-- -- --
Mode Setup, Power Down & Self Refresh Mode Register Set cycle time Self Refresh Exit time Power Down Exit time
tMRD tSREX tPDEX
2 200
-- --
2 200
-- --
2 200
-- --
2 200
-- --
2 200
-- --
tCK tCK
ns
-- -- --
2*tCK -- + tIS
2*tCK -- + tIS
2*tCK -- + tIS
1*tCK -- + tIS
1*tCK -- + tIS
1) All parameters only valid for: TA = 0 to 70 C; VSS = 0 V; 2.5 V < VDD < 2.9 V for -3 and -3.3; 2.375 V < VDD < 2.9 V for -3.6; VDD = 2.5 V 0.125 V for -4.5 and -5; VDDQ = 2.5 V 0.125 V 2) Maximum clock rate is only guaranteed with the specified interface. The SSTL2-Weak Mode interface is limited to a maximum speed of 250MHz. 3) The Write Recovery Time starts at the first rising edge of clock after the last valid (falling) DQS edge of the slowest DQS signal.
Table 18 Interface Parameter
Timing Parameters for speed sorts L3.6 and L4.5 L3.6 MIM Symbol min. max. L4.5 WM/MIM min. max. Unit Note 1) -- --
2)
Part Number Extension
--
Clock and Clock Enable Clock Cycle Time System frequency Clock high level width Data Sheet 3.6 6.0 10 278 238 0.55 4.5 4.5 166 100 0.45 6.0 10 222 222 0.55 ns ns CL = 4 CL = 3
tCK fCK fCK tCH
46
4.2 166 100 0.45
MHz CL = 4 MHz CL = 3
tCK
--
V1.7, 2003-07
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5] 128 Mbit DDR SGRAM [4M x 32]
Electrical Characteristics Table 18 Interface Parameter Clock low level width Minimum clock half period Command and Address Setup and Hold Times Address and Command input setup time Address and Command input hold time Common Parameters Row Cycle Time Row Cycle Time in Auto Refresh Row Active Time ACTIVE to READ with Auto precharge command Row Precharge Time Activate(a) to Activate(b) Command period CAS(a) to CAS(b) Command period Last data in to Active (tWR + tRP) Timing Parameters for speed sorts L3.6 and L4.5 (cont'd) L3.6 MIM Symbol min. max. 0.55 -- L4.5 WM/MIM min. 0.45 max. 0.55 -- Unit Note 1) -- --
2)
Part Number Extension
-- -- --
tCL tHP
0.45
tCH, tCL
tCH, tCL
tCK tCK
tIS tIH
0.75 0.75
-- --
1.0 1.0
-- --
ns ns
-- --
tRC tRFC tRAS tRAP tRP tRRD tCCD tDAL
46.8 54 32.4 14.4 9.0 1 6
-- --
54 63
-- --
ns ns ns
-- -- -- -- -- -- -- --
15.7k 36 -- -- -- -- 18 9.0 1 6
15.7k ns -- -- -- -- ns ns
tRAS (min.)- (burst length * tCK /2)
tCK tCK
Read Cycle Timing Parameters for Data and Data Strobe Data Access Time from Clock DQS edge to Clock edge skew DQS Read Preamble DQS Read Postamble Row to Column Delay Time for Reads DQS edge to output data edge skew Data hold skew factor Data Output Hold time from DQS
tAC tDQSCK tRPRE tRPST tRCDDC tDQSQ tQHS tQH
-0.55 -0.55 0.7 0.8 4 -- --
+0.55 -0.7 +0.55 -0.7 0.9 1.1 -- 0.36 0.7 0.8 4 --
+0.7 +0.7 0.9 1.1 -- 0.45
ns ns
-- -- -- -- -- -- -- --
tCK tCK tCK
ns ns
+0.33 --
+0.45 ns
tHP - tQHS
tHP - tQHS
Write Cycle Timing Parameters for Data and Data Strobe Row to Column Delay Time for Writes Clock to rising Edge DQS (Write Latency) Data-in to DQS Setup Time Data-in to DQS Hold Time Data Mask to DQS Setup Time Data Mask to DQS Hold Time Clock to DQS Write Preamb. Setup Time Clock to DQS Write Preamble Hold Time DQS Write Postamble Hold Time Write Recovery Time Data Sheet
tRCDWR tDQSS tQDQSS tQDQSH tDMDQSS tDMDQSH tWPRES tWPREH tWPST tWR
47
2 0.75 0.40 0.40 0.40 0.40 0 0.25 0.4 2
-- 1.1 -- -- -- -- -- -- 0.6 --
2 0.75 0.6 0.6 0.6 0.6 0 0.25 0.4 2
-- 1.25 -- -- -- -- -- -- 0.6 --
tCK tCK
ns ns ns ns
-- -- -- -- -- -- -- -- --
3)
tCK tCK tCK tCK
V1.7, 2003-07
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5] 128 Mbit DDR SGRAM [4M x 32]
Electrical Characteristics Table 18 Interface Parameter Internal WRITE to READ command delay Write DQS High level Width Write DQS Low level Width Refresh Cycle Refresh Period (4096 cycles) Average periodic refresh interval Refresh to Refresh command interval Mode Setup, Power Down & Self Refresh Mode Register Set cycle time Self Refresh Exit time Power Down Exit time Timing Parameters for speed sorts L3.6 and L4.5 (cont'd) L3.6 MIM Symbol min. max. -- 0.65 0.65 L4.5 WM/MIM min. 1 0.35 0.35 max. -- 0.65 0.65 Unit Note 1) -- --
2)
Part Number Extension
-- -- -- --
tWTR tDQSH tDQSL
1 0.35 0.35
tCK tCK tCK
tREF tREFC tREFC
-- -- --
32 7.8 15.7
-- -- --
32 7.8 15.7
ms us us
-- -- --
tMRD tSREX tPDEX
2 200
-- --
2 200
-- --
tCK tCK
ns
-- -- --
2*tCK+tIS --
1*tCK+tIS --
1) All parameters only valid for: TA = 0 to 70 C; VSS = 0 V; 2.375 V < VDD < 2.9 V for L3.6; VDD = 2.5 V 0.125 V for L4.5; VDDQ = 2.5 V 0.125 V 2) Maximum clock rate is only guaranteed with the specified interface. The SSTL2-Weak Mode interface is limited to a maximum speed of 250MHz. 3) The Write Recovery Time starts at the first rising edge of clock after the last valid (falling) DQS edge of the slowest DQS signal.
Table 19
HYB25D128323C-3 CAS latency 4 4 4 3 3 3
Frequency / tCK 333 MHz / 3.0 ns 300 MHz / 3.3 ns 278 MHz / 3.6 ns 250 MHz / 4.0 ns 222 MHz / 4.5 ns 200 MHz / 5.0 ns
tRC
13 13 13 12 10 9
tRFC
15 15 15 14 12 11
tRAS
9 9 9 8 7 6
tRP
4 4 4 4 3 3
tWR
2 2 2 2 2 2
tRRD
3 3 3 3 2 2
tDAL
6 6 6 6 5 5
tRCDRD
4 4 4 3 3 3
tRCDWR
2 2 2 2 2 2
Units
tCK tCK tCK tCK tCK tCK
Data Sheet
48
V1.7, 2003-07
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5] 128 Mbit DDR SGRAM [4M x 32]
Electrical Characteristics
Table 20
HYB25D128323C-3.3 CAS latency 4 4 3 3 3
Frequency / tCK 300 MHz / 3.3 ns 278 MHz / 3.6 ns 250 MHz / 4.0 ns 222 MHz / 4.5 ns 200 MHz / 5.0 ns
tRC
13 13 12 10 9
tRFC
15 15 14 12 11
tRAS
9 9 8 7 6
tRP
4 4 4 3 3
tWR
2 2 2 2 2
tRRD
3 3 3 2 2
tDAL
6 6 6 5 5
tRCDRD
4 4 3 3 3
tRCDWR
2 2 2 2 2
Units
tCK tCK tCK tCK tCK
Table 21
HYB25D128323C-3.6 CAS latency 4 4 3 3
Frequency / tCK 278 MHz / 3.6 ns 250 MHz / 4.0 ns 222 MHz / 4.5 ns 200 MHz / 5.0 ns
tRC tRFC
13 13 12 10 15 15 14 12
tRAS
9 9 8 7
tRP
4 4 4 3
tWR
2 2 2 2
tRRD
3 3 2 2
tDAL
6 6 6 5
tRCDRD
4 4 4 3
tRCDWR
2 2 2 2
Units
tCK tCK tCK tCK
Table 22
HYB25D128323C-4.5 CAS latency 3 3 3
Frequency / tCK 222 MHz / 4.5 ns 200 MHz / 5.0 ns 183 MHz / 5.5 ns
tRC tRFC
12 12 12 14 14 14
tRAS
8 8 8
tRP
4 4 4
tWR
2 2 2
tRRD
2 2 2
tDAL
6 6 6
tRCDRD
4 4 4
tRCDWR
2 2 2
Units
tCK tCK tCK
Table 23
HYB25D128323C-5 CAS latency 3 3
Frequency / tCK 200 MHz / 5.0 ns 183 MHz / 5.5 ns
tRC tRFC
12 12 14 14
tRAS
8 8
tRP
4 4
tWR
2 2
tRRD
2 2
tDAL
6 6
tRCDRD
4 4
tRCDWR
2 2
Units
tCK tCK
Data Sheet
49
V1.7, 2003-07
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5] 128 Mbit DDR SGRAM [4M x 32]
Electrical Characteristics
Table 24
HYB25D128323CL3.6 CAS latency 4 4 3 3 3
Frequency / tCK 278 MHz / 3.6 ns 250 MHz / 4.0 ns 222 MHz / 4.5 ns 200 MHz / 5.0 ns 166 MHz / 6.0 ns
tRC tRFC
13 13 12 10 9 15 15 14 12 11
tRAS
9 9 8 7 6
tRP
4 4 4 3 3
tWR
2 2 2 2 2
tRRD
3 3 2 2 2
tDAL
6 6 6 5 5
tRCDRD
4 4 4 3 3
tRCDWR
2 2 2 2 2
Units
tCK tCK tCK tCK tCK
Table 25
HYB25D128323CL4.5 CAS latency 3 3 3 3 3
Frequency / tCK 222 MHz / 4.5 ns 200 MHz / 5.0 ns 183 MHz / 5.5 ns 166 MHz / 6.0 ns 143 MHz / 7.0 ns
tRC tRFC
12 12 12 10 9 14 14 14 12 11
tRAS
8 8 8 7 6
tRP
4 4 4 3 3
tWR
2 2 2 2 2
tRRD
2 2 2 2 2
tDAL
6 6 6 5 5
tRCDRD
4 4 4 3 3
tRCDWR
2 2 2 2 2
Units
tCK tCK tCK tCK tCK
Table 26
Operating Currents Symbol -3 max. 200 -3.3 -3.6 -4.5 -5.0 L3.6 L4.5 Unit Notes typ. 190 180 160 150 typ. mA
1)
Parameter & Test Condition
OPERATING CURRENT: One bank; IDD0 Active-Precharge; tRC = tRC(min.); tCK = tCK(min.); DQ, DM and DQS inputs changing once per clock cycle; Address and control inputs changing once every two clock cycles OPERATING CURRENT: One bank; IDD1 Active-Read-Precharge; BL=4; CL=4; tRCDDC = 4*tCK; tRC = tRC(min.); tCK = tCK(min.); IOUT = 0mA; Address and control inputs changing once per clock cycle PRECHARGE POWER-DOWN IDD2P STANDBY CURRENT: All banks idle; power-down mode; tCK = tCK(min.); CKE=LOW
230
220
110
190
180
mA
26
22
22
14
14
10
7
mA
Data Sheet
50
V1.7, 2003-07
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5] 128 Mbit DDR SGRAM [4M x 32]
Electrical Characteristics Table 26 Operating Currents (cont'd) Symbol -3 max. IDLE STANDBY CURRENT: CKE=HIGH; CS#=HIGH (DESELECT); All banks idle; tCK = tCK(min.); Address and control inputs changing once per clock cycle; VIN = VREF for DQ, DQS and DM 130 -3.3 -3.6 -4.5 -5.0 L3.6 L4.5 Unit Notes typ. 120 110 100 100 typ. mA
Parameter & Test Condition
IDD2F
ACTIVE POWER-DOWN STANDBY IDD3P CURRENT: one bank active; powerdown mode; CKE=LOW; tCK = tCK(min.); ACTIVE STANDBY CURRENT: CS#=HIGH; CKE=HIGH; one bank active; tRC = tRC(max.); tCK = tCK(min.); Address and control inputs changing once per clock cycle; DQ, DQS, and DM inputs changing twice per clock cycle
65
60
55
50
50
mA
IDD3N
130
120
110
100
100
mA
OPERATING CURRENT BURST IDD4R READ: BL=2; READS; Continuous burst; one bank active; Address and control inputs changing once per clock cycle; tCK = tCK(min.); Iout=0mA; 50% of data changing on every transfer OPERATING CURRENT BURST IDD4W WRITE: BL=2; WRITES; Continuous burst; one bank active; Address and control inputs changing once per clock cycle; tCK = tCK(min.); DQ, DQS, and DM changing twice per clock cycle; 50% of data changing on every transfer AUTO REFRESH CURRENT: tRC = tRFC(min.); tCK = tCK(min.) SELF REFRESH CURRENT: Self Refresh Mode; CKE<=0.2V; tCK = tCK(min.)
370
350
330
290
280
190
160
mA
370
350
330
290
280
200
175
mA
IDD5 IDD6
320 20
300 16
280 16
240 10
230 10 4 3
mA mA
IDD7 BURST OPERATING CURRENT 4 bank operation: Four bank interleaving READs; BL=4; with Auto Precharge; tRC = tRC(min.); tCK = tCK(min.); Address and control inputs change only during Active, READ, or WRITE commands
1) Measured with output open.
430
400
370
320
300
mA
1)
Data Sheet
51
V1.7, 2003-07
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5] 128 Mbit DDR SGRAM [4M x 32]
Package Outlines
5
Package Outlines
Module Package The package is conforming with JEDEC MO-205 Variation BD General Tolerances according to ISO 8015 The inner matrix of 4 x 4 balls is reserved for thermal contacts
11.1 10.9
11.1 10.9 1.50 1.44 1.36 -0.85 0.8 --
0.10
8.8 8.8 0.8 --
8.8 8.8
MAX All dimensions in mm. Notation is TYP or MAX or TYP MIN MIN
Figure 32
Package Outlines
Data Sheet
52
V1.7, 2003-07
www.infineon.com
Published by Infineon Technologies AG


▲Up To Search▲   

 
Price & Availability of HYB25D128323C

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X